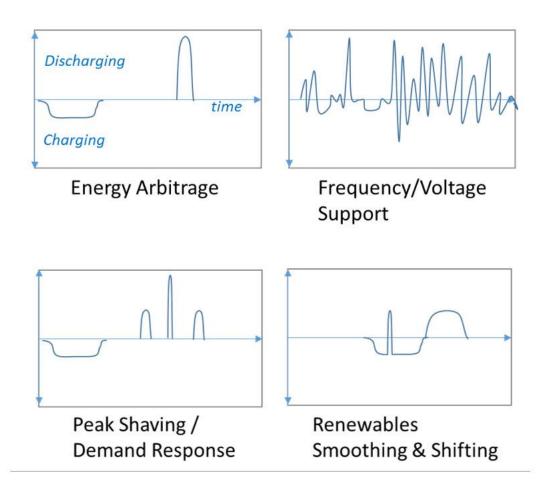

Advanced Energy 101

Energy Storage Presentation

Energy Storage Overview


- •Capture of energy produced at one time for use at a later time.
- •Energy is stored (charged) when generation exceeds demand.
- •Energy is released (discharged) when demand exceeds generation.
- •Usefulness exacerbated by growing amount of intermittent resources like solar and wind.

How Energy Storage Works

Energy Storage Applications/Value Streams

- Energy Arbitrage
- Frequency Regulation
- Volt/Var Support
- Peak Shaving/Demand Response
- Renewable Smoothing/Shifting
- •Islanding During Outages

Energy Storage Business Models

Centralized Utility or Merchant Owned

- Economic Benefits to Utility
- Little to No Resiliency Benefits

Distributed Utility Owned

- Economic Benefits to Utility
- Resiliency Benefits to Customer

Distributed Customer Owned

- Economic Benefits to Utility and Customer
- Resiliency Benefits to Customer

Energy Storage Technologies

Technology Type	Subtechnology Type				
Electro-chemical	Electro-chemical capacitor, lithium-ion battery, flow battery, vanadium redox flow battery, lead-acid battery, metal air battery, sodium-ion battery				
Electro-mechanical	Compressed air storage, flywheel				
Chemical	Hydrogen storage, liquid air energy storage				
Pumped hydro storage	Closed-loop pumped hydroelectricity storage, open-loop pumped hydroelectricity storage				
Thermal storage	Chilled water thermal storage, concrete thermal storage, heat thermal storage, ice thermal storage, molten salt thermal storage				

Source: US DOE, 2017.

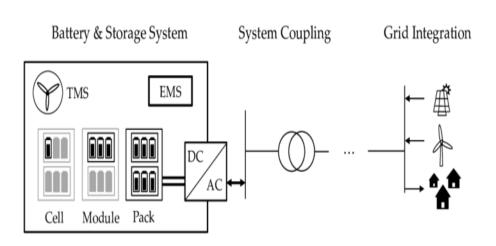
Electro-Chemical Energy Storage

Li-Ion and Flow batteries currently are the two most commercially viable technologies for grid BESS.

Technology	Typical Duration	Size	Service Life	AC Round trip efficiency	Cycle Life	Advantages	Disadvantages
Lithium-Ion	0-6 hour	Up to 100 MW+	10-15 years*	85%	Annual degradation	Efficient power Energy dense Flexible	Flammable** Cycle life limited
Flow	2-8 hour	Up to 100 MW+	20 years	65-75%	Theoretically unlimited and can be discharged 100%	High cycle life/service life No degradation Not flammable	Reduced efficiency

^{*} Warrantees are around 7 years with 1-2 year workmanship warranties

Source: Lazard


^{**} Note: flammability is dependent on specific chemistry used to develop battery. When considering any type of battery, including liion, it is important to discuss flammability issues with the vendor.

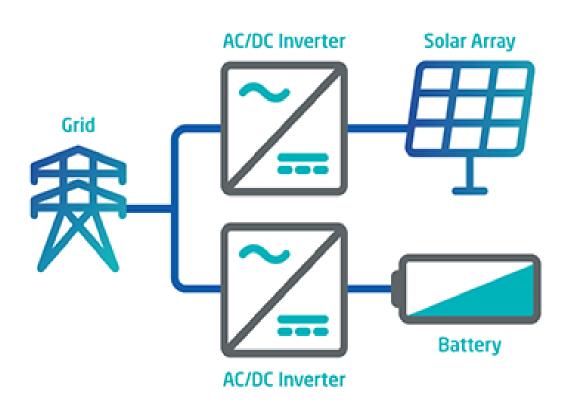
Lithium-Ion Battery Energy Storage Systems (BESS)

Lithium-Ion has enjoyed the Lion's share of deployment primarily due to:

- Higher Round-Trip Efficiency
- Modular Characteristics
- Flexibility in Siting
- Ample Supply Chain Availability
- Falling Cell and System Costs
- Favorable Performance Metrics

BESS System Design

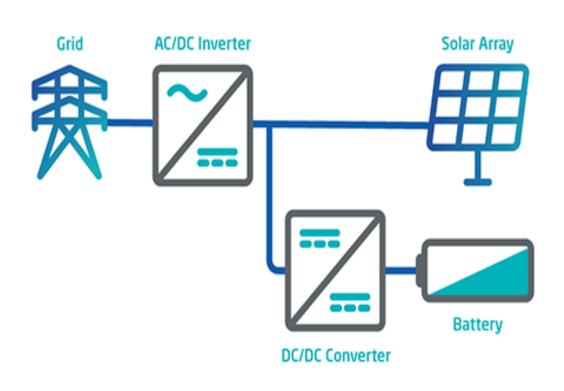
- Battery System (Cell, Module, Pack)
- Thermal Management (TMS)
- Energy Management (EMS)
- & Transformer
- Environmental Conditions
- Power Electronics (AC/DC) Application Specific Profile
 - Local Connection /
 - Grid Level of Integration
- Investment (Batt., Periphery, Casing) Power Electronics Invest
- · Degradation and Efficiency
- Sizing & Operation Control
- Conversion Efficiency
- · Placement of System
- Profit / Savings via Application
- Stakeholder Involvement
- · Regulatory Framework


Solar + Storage

•Solar + Storage pairs a battery with a new or existing solar system to increase its value.

•This makes solar dispatchable by allowing the sytem to operate at night or during cloudy days.

Solar + Storage – AC Coupled

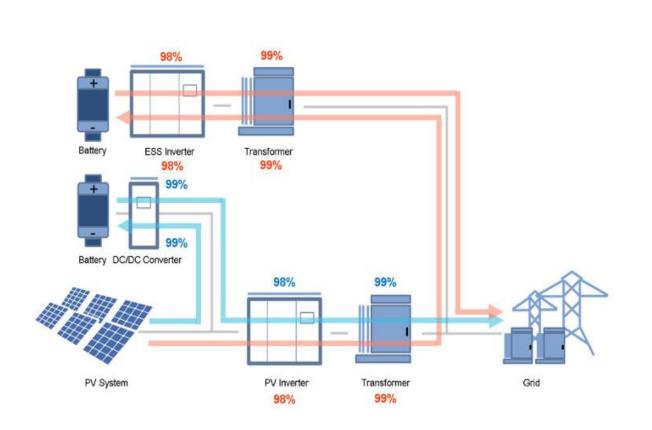

Pros:

Flexibility in location.

Ease in retrofitting existing solar generating assets.

Reduced HVAC and fire suppression requirements.

Solar + Storage – DC Coupled


Pros:

Single bi-directional inverter.

Higher round-trip efficiency.

Ability to capture excess clipped PV.

AC-Coupled and DC-Coupled Efficiency Comparison

DC Coupled		AC Coupled	
DC/DC CHG	99%	N/A	
DC/DC DCHG	99%	N/A	
PV INV DCHG	98%	98%	
ESS INV CHG	N/A	98%	
ESS INV DCH	N/A	98%	
XFMR CHG	N/A	99%	
XFMR DCHG	99%	99%	
TOTAL:	95.1%	92.2%	

AC-Coupled and DC-Coupled Value Comparison

	DC-COUPLED	AC-COUPLED
CAPACITY FIRMING	Ø	Ø
ENERGY TIME SHIFTING	Ø	Ø
CLIPPING RECAPTURE	Ø	
CURTAILMENT RECAPTURE	Ø	
LOW VOLTAGE HARVEST	⊘	
RAMP RATE CONTROL	⊘	Ø

Thank You!